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Abstract
We study the time evolution of the quantum-classical correspondence (QCC)
for the well-known model of quantized perturbed cat maps on the torus in the
very specific regime of semi-classically small perturbations. The quality of
the QCC is measured by the overlap of the classical phase-space density and
corresponding Wigner function of the quantum system called quantum-classical
fidelity (QCF). In the analysed regime the QCF strongly deviates from the
known general behaviour discussed in Horvat et al (2006 Nonlinearity 19 1–23
(Preprint quant-ph/0601139)), in particular it decays faster than exponential.
Here we study and explain the observed behaviour of the QCF and the apparent
violation of the QCC principle.

PACS numbers: 03.65.−w, 03.65.Yz, 05.45.Mt

1. Introduction

The quantum-classical correspondence (QCC) is the basic principle underlying any physical
quantization of a classical system. According to this principle the quantum system should
behave in a manner similar to that of the corresponding classical system with increasing energy
or a decreasing effective Planck constant. The importance of the QCC as a tool in the study of
quantum systems was recognized very early in the development of quantum mechanics with
the Ehrenfest theorem and later by the introduction of semi-classical methods [2]. The study
of QCC gave in the 1980s birth to quantum chaology—research area devoted to study the
connections between dynamical properties of classical systems and corresponding quantum
systems [3].

The QCC can be explored and discussed using various tools and methods available in the
theory of classical/quantum systems. In a recent paper [1], a phase-space representation has
been used to study the time evolution of QCC in generic chaotic systems on compact classical
phase space.
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The QCC is there quantified using the so-called quantum-classical fidelity (QCF), namely
the integrated overlap between the classical phase-space density and the corresponding Wigner
function. It has been shown that in classically chaotic systems, after some initial plateau, the
QCF decays exponentially in time with a decay rate coinciding with the maximal Lyapunov
exponent λ. While it is common knowledge in the realm of quantum chaos that the phase-
space correspondence between classical and quantum mechanics drops down on the scale
of Ehrenfest time tE ≈ − log h̄/λ, the exact dependence of initial plateau on dynamical
properties and on Hilbert space dimension is still an important open question that we aim to
address here, at least in a special case. In particular, here we discuss the QCC using QCF
for the so-called perturbed Arnold cat map [4] on a torus T

2 = [0, 1]2. The (unperturbed)
cat map is a paradigmatic example of a classical uniformly hyperbolic chaotic systems. It
has been one of the first extensively studied quantum maps [5], and since then it has been
used several times to prove or disprove various conjectures concerning statistical properties
of eigenfunctions for quantum system with strongly chaotic classical motion (see for example
[6] and references therein). Because of the linearity of the classical motion, its quantum
counterpart inherits a natural non-generic number-theoretical structure, reflected for example
in the rigid distribution of eigenvalues and also in the so-called exactness of the Egorov
property, which roughly means that classical and quantum time evolution perfectly commute.
A generic behaviour of eigenvalue statistics, namely a good agreement with the predictions of
random matrix theory, can be gained by perturbing the linear cat dynamics by composing it
with a time one flow generated by a global Hamiltonian [7, 8].

We are here interested in exploring the time evolution properties of these perturbed maps.
In particular, we aim to study how QCC decays in the presence of perturbation and especially
the time scales of the initial plateau in QCF.

2. Quantization on a torus and Egorov property

We recall here the basic facts of quantum mechanics over the torus which we need in the
paper; see [6, 9] for further details. The system is quantized on a torus T

2 by introducing
a position basis

{|qn〉 : qn = n
N

}
n∈ZN

and a momentum basis
{|pm〉 : pm = m

N

}
m∈ZN

in the
Hilbert space HN of dimension N. We apply periodic boundary conditions |qn+N 〉 = |qn〉 and
|pm+N 〉 = |pm〉. The two bases are related to the discrete Fourier transform

〈qn|pm〉 = 1√
N

ei 2π
N

nm. (1)

Then according to the Weyl–Wigner quantization we associate an operator Â with a classical
observable a defined over grid points GN = {

xn,m = (
n

2N
, m

2N

)}
(n,m)∈Z

2
2N

on classical phase

space T
2 using the following relations:

an,m = tr{ÂÂn,m}, Â = Q̂w(a) =
∑

(n,m)∈Z
2
2N

an,mÂn,m, (2)

where Ân,m is called the point operator or the kernel of the Weyl–Wigner formalism

Ân,m = ei π
N

nm

2
√

N

∑
k∈ZN

e−i 2π
N

km|qn−k〉〈qk|. (3)
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We say that a is the phase-space representation of the operator Â or Â is the quantization of the
phase-space function a. The phase-space representation of a density operator corresponding
to a pure state ρ̂ = |ψ〉〈ψ | is the Wigner function Wψ(n,m) defined as

Wψ(n,m) = e
iπ
N

nm

2
√

N

∑
k∈ZN

〈ψ |qn−k〉〈qk|ψ〉 e−i 2π
N

km, (n,m) ∈ Z
2
2N, (4)

with normalization
∑

(n,m)∈Z
2
2N

Wψ(n,m)2 = 1. Namely,

Q̂w(Wψ) = ρ̂ = |ψ〉〈ψ |. (5)

Let us assume that M : T
2 → T

2 is a classical discrete, area preserving, map on the torus.
Then it is possible to associate a corresponding quantum evolution operator Û : HN → HN

with M. In the following, N is always an even integer in order to avoid certain technicalities
in quantization (see [6] and references therein). The propagator Û will satisfy an Egorov
estimate, namely [10]:

lim
N→∞

‖Û †Q̂w(a)Û − Q̂w(a ◦ M)‖ = 0. (6)

In particular, if the classical map is a linear automorphisms i.e. M(x) = M.x, where matrix
M ∈ SL(2, Z) (e.g. the cat map) then Egorov is exact:

Û †Q̂w(a)Û = Q̂w(a ◦ M). (7)

3. Cat map and breaking of Egorov property

The classical dynamics over the torus that we study here is given by the map M : T
2 → T

2:

(q, p)′ = M(q, p),
p′ = p + kq + ε · V̇(q) mod 1
q ′ = q + p′ mod 1,

(8)

with k ∈ N, perturbation parameters ε = (ε0, ε1, ε2) ∈ R
3 and perturbation function

V(q) =
(

1

2
q2,− 1

2π
cos(2πq), q

)
. (9)

The quantum evolution operator corresponding to the perturbed cat map Û can be written as

Û = exp
(
−i

π

N
m̂2

)
exp

(
ik

π

N
n̂2 + iNε · V̂

)
, V̂ = V

(
2π

N
n̂

)
, (10)

where we have for convenience introduced auxiliary operators

n̂|qn〉 = n|qn〉, m̂|pm〉 = m|pm〉. (11)

If the perturbations are neglected ε = 0, we obtain the usual linear cat map system, where the
map and evolution operator are denoted by

Mc = M|ε=0, Û c = Û |ε=0. (12)

As already remarked, it is well known that this system is Egorov exact. Moreover, the classical
cat map is uniformly hyperbolic with the Lyapunov exponent

λ(k) = log
[

1
2 (k + 2 +

√
k(k + 4))

]
. (13)

For the coming analysis, it is convenient to write the classical map and the quantum evolution
operators of the perturbed cat map as

Û = Û c exp
(
iNε · V̂

)
, M = Mc + (ε · V̇, ε · V̇). (14)
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Figure 1. The average QCF F(t) with perturbation vector ε = (ε, 0, 0) for different perturbations
strength ε at Hilbert space dimension N = 512 and k = 1, 2 (a), (b). The average is taken over
100 initial Gaussian packets uniformly scattered over phase space.

We compare the classical and quantum evolution of the perturbed cat map in the classical
phase space at some fixed dimension N and perturbation ε. The ε = ‖ε‖ is refereed to as the
perturbation strength. Here we are mainly interested in the particular case of semiclassical
small perturbations Nε � 1. More precisely, the classical system starts from a smooth
probability distribution ρ : T

2 → R resembling a Gaussian packet on phase space at the point
(q0, p0),

ρ(q0,p0)(q, p) = DN,(q0,p0)

(∑
ν∈Z

e−2πN(q−q0+ν)2

)(∑
ν∈Z

e−2πN(p−p0+ν)2

)
, (15)

where the scalar factor DN is pinned down by the normalization∑
(n,m)∈Z

2
2N

ρ2
(q0,p0)

(xn,m) = 1, (16)

which has a simple leading term in the asymptotic approximation, N → ∞, reading

DN,(q0,p0) � 1√
N

[(1 + 2 cos(4πNq0) e−πN)(1 + 2 cos(4πNp0) e−πN)]−
1
2 . (17)

The quantum counterpart is initially in a coherent state |φ〉 with a Wigner function Wψ similar
to the classical distribution (see [1, 11]):

Wφ(n,m) = ρ(xn,m) + e−|O(N)|, (n,m) ∈ Z
2
2N . (18)

We then let these two systems evolve up to time t ∈ Z
∗ using equations

ρt = ρ ◦ M−t , |φt 〉 = Û t |φ〉, ρ̂t = Û t ρ̂Û−t , (19)

and observe the QCC between these two systems by calculating the overlap of the density
ρt and corresponding Wigner function Wφt . The overlap is called quantum-classical fidelity
(QCF) defined as

F(t) =
∑

(n,m)∈Z
2
2N

Wψt (n,m)ρt (xn,m) = tr{ρ̂t Q̂(ρt )} � 1 + e−|O(N)|. (20)

Because the perturbed system is not Egorov exact, the QCF decreases with time. In figure 1
we show the decay of an average QCF 〈F(t)〉 for different k and perturbation strengths ε using
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Figure 2. The average QCF F(t) for different perturbation strengths ε with perturbation vector
ε = (0, ε, 0), (0, 0, ε) (a), (b) at Hilbert space dimension N = 512 and k = 1. For averaging see
caption of figure 1.

the perturbation vector ε = (ε, 0, 0), where 〈•〉 denotes the uniform average taken over the
initial positions of the coherent packet. The QCF does not decay up to time called the breaking
time tbr, which increases with decreasing perturbation. Beyond tbr the QCF decays ‘very fast’
(as we will argue, faster then exponential) and eventually converges to the ergodic plateau
given by 1/N : the decay is in fact visually faster than the generally expected exponential
Lyapunov decay 〈F(t)〉 ∼ exp(−λt) [1], which is shown in the figures. Basically, the same
scenario occurs in other choices of perturbation vectors ε as we can see in figure 2. In the case
of constant classical perturbation ε = (0, 0, ε) shown in figure 2(b), the correspondence is
broken mainly by a rigid shifting of the deformed packets in the quantum and classical picture.
Therefore the convergence towards the ergodic plateau is less smooth as in other cases. At this
point it is difficult to deduce the correct functional form of the QCF F(t). Nevertheless, in the
following we present a theoretical explanation of these numerical observations, disclosing the
super-exponential nature of the QCF decay in this particular regime of. perturbation.

We are interested in the evolution of the QCF in the limit of small perturbations ε → 0.
In this regime we examine the time tbr(p) on which an average QCF 〈F(t)〉 drops below some
value p:

tbr(p) = min{t ∈ Z
∗ : 〈F(t)〉 < p}, (21)

where the average 〈•〉 is taken uniformly over positions of the initial Gaussian packets. It is
meaningful to express the dynamics relative to the unperturbed cat map writing

ρt = ρt
c + δρt , ρ̂t = ρ̂t

c + δρ̂t , (22)

where the dynamics of the cat map case is given by

ρ̂t
c = Û t

cρ̂Û−t
c , ρt

c = ρ ◦ M−t
c . (23)

and due to the Egorov property these are connected by

ρ̂t
c = Q̂

(
ρt

c

)
. (24)

By inserting ansätz (22) into formula (20) we obtain the QCF expressed in terms of deviations
from the unperturbed case

F(t) = 1 + tr
{
δρ̂t Q̂

(
ρt

c

)}
+ tr

{
ρ̂t

cQ̂(δρt )
}

+ tr{δρ̂t Q̂(δρt )}. (25)
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Due to the existence of the Egorov property in the cat map, the approximated QCF can be
expressed in terms of the quantum fidelity Fq(t) [12] and the classical fidelity Fc(t) [13] as

F(t) = |Fq(t)|2 + Fc(t) − 1 + tr{δρ̂t Q̂(δρt )}, (26)

where Fq and Fc are written as

Fq(t) = 〈φ|Û−t Û t
c|φ〉, Fc(t) =

∑
(n,m)∈Z

2
2N

ρ(M−t (xn,m))ρ
(
M−t

c (xn,m)
)
. (27)

Relation (26) is very instructive and helps to understand the behaviour around the initial
plateau, but it seems to us that the study of the plateau itself was greatly avoided in the past.
In the following we discuss the second and the third terms in (25) denoted by

I1 = tr
{
ρ̂t

cQ̂(δρt )
} =

∑
(n,m)∈Z

2
2N

ρt
c(xn,m)δρt (xn,m), (28)

I2 = tr
{
δρ̂t Q̂

(
ρt

c

)} = tr
{
δρ̂t ρ̂t

c

}
. (29)

The last terms in (25) and (26) are the second-order corrections, which we do not discuss in
detail. In order to understand I1 (28) we discuss the deviation between trajectories of a chaotic
and ergodic map φ = M−1 : T

2 → T
2 and of its perturbation φ + δφ = (M + δM)−1, starting

at the same point x. The deviation is defined as

δφt (x) := (φ + δφ)t (x) − φt(x), φt+1(x) = φt(φ(x)) (30)

and obeys in the limit δφ → 0 the following recursion:

δφt+1(x) = (φ + δφ)(φt (x) + δφt (x)) − φt+1(x), (31)

.= (∇φ)(φt (x))δφt (x) + δφ(φt (x)), (32)

where we have neglected second-order corrections. By iterating this equations from a given
initial position x, the deviation is written as a series

δφt (x) =
t−1∑
k=0

[
t−1∏
l=k

(∇φ)(φl(x))

]
δφ(φk−1(x)) + δφ(φt−1(x)). (33)

By taking into account that map is chaotic and ergodic with the Lyapunov exponent λ, we
get in the limits t → ∞ and δφ → 0, applied in given order, the leading contribution of the
deviation expressed as

δφt (x) = O(δφ) eλt , 〈‖δφt (x)‖〉 ≈ εA eλt , (34)

where 〈•〉 denotes the uniform average over initial positions x. The constant A ∈ R depends
only on the type of perturbation and dynamical properties of the map. By plugging this result
into expression I1 (28) we obtain

I1 =
∑

(n,m)∈Z
2
2N

ρ(xn,m)ρ(xn,m + δφ̃t (xn,m)) − 1, δφ̃t = δφt ◦ Mt, (35)

where we have used that the cat map M conserves the grid GN : M(GN) = GN . Then by
taking into account the explicit form of ρ (15) and considering only the behaviour about the
central point of the Gaussian packet the above expression is approximated as

I1 ≈ exp(−πN‖δφ̃t (q0, p0)‖2) − 1, 〈I1〉 ≈ exp(−πNA2ε2 exp(2λt)), (36)

with 〈•〉 representing the uniform average over position of the initial coherent packet. The
approximation is meaningful up to times εN

1
2 exp(λt) = O(1), when deformation of the
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packets can be neglected. This is especially appropriate to describe the case of constant
classical perturbation. In the limit of small perturbations the leading term in expression I1

scales with time and perturbation as O(Nε2 exp(2λt)), where the changes of QCF are small.
The behaviour of the expression I1 is obtained by considering the fact that

Û t = Û t
c + iNε ·

t∑
k=1

Û k
cV̂Û t−k

c + O((N‖εV̂‖)2t), (37)

which yields

δρ̂t = iNε · [
Ŝt ρ̂t

c − ρ̂−t
c Ŝ−t

]
+ O((N‖εV̂‖)2t), (38)

Ŝt =
t∑

k=1

Û−k
c V̂Û k

c . (39)

By plugging this into I2 (29) we get

I2 = 2Nε · �{
tr
{
Ŝt ρ̂t

c

}}
+ O((N‖εV̂‖)2t). (40)

By assuming that limt→∞ t−1Ŝt �= 0 we see that the leading term in I2 scales as O(Nεt) in
time. Then by considering results I1 (36) and I2 (40) we get the leading-order contributions
to the QCF reading

F(t) ≈ 2Nε · �{
tr
{
Ŝt ρ̂t

c

}}
+ exp(−πN‖δφ̃t (q0, p0)‖2). (41)

In the limit of the small perturbations the last term in (41) is dominant. This is also supported
numerically as shown in figure 3, where we show G(t) = log(− log(〈F(t)〉) for different
perturbation vectors ε, perturbation strength ε and k. We see that the average QCF evolves
following the curve G(t) ≈ 2λ(k)t + const according to the dominant term in QCF I1(t) (36)
almost up to the time, when QCF intersects the ergodic plateau given by G(t) ≈ log log N.

The plot G(t) has an initial plateau due to finite arithmetic. We conclude that the QCF decays
in average towards the ergodic plateau faster than exponentially as

〈F(t)〉 = exp(−|O(exp(|O(t)|))|). (42)

The expression for QCF (41) obtains in the limit
√

Nε exp(λt) � 1 a simple scaling form

〈F(t)〉 = 1 − O(Nε2 e2λt ) + O(Nεt), (43)

where the first non-constant term is dominant in F(t). In this perturbation approach we can
approximate tbr(p) (21) for fixed 1 − p � 1 as

t ≈ log(1 − p) − log(Nε2)

2λ
, (44)

which in the limit of infinitesimal perturbations obtains the following asymptotic form:

λtbr � −log ε, ε → 0. (45)

We see that at fixed N and p the time depends only on the Lyapunov exponent λ and perturbation
strength ε.

4. Numerical result on the breaking time

In the following we present numerical results of the breaking time tbr in our perturbed cat map.
We explore in particular its dependence on the perturbation strength ε and the Hilbert space
dimension N.
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Figure 3. The representation of average QCF 〈F(t)〉 evolution calculated using perturbation vector
ε equal to (ε, 0, 0) (a), (0, ε, 0) (b) and (0, 0, ε) (c) for different ε and k = 1, 2 at the dimension
N = 512, where data presented in figures 1 and 2 are also considered. For averaging see the
caption of figure 1.
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Figure 4. The dependence of tbr on perturbation strength ε in the cases k = 1 (a) and k = 2
(b) by using perturbation vector ε = (ε, 0, 0) at N = 512 .

Figures 4 and 5 show the plots of tbr in dependence of ε for all three types of the
perturbations. Because we are discussing a discrete dynamical system, the break time
tbr(ε, p) is a discrete function of ε ∈ R

+. In figure 4 we show tbr as a function of ε in
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Figure 5. The dependence of tbr on perturbation strength ε in the case of perturbation vectors
ε = (0, ε, 0), (0, 0, ε) (a), (b) at N = 512 and k = 1.
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Figure 6. The dependence of tbr of Hilbert space dimension N at perturbation ε = (10−10, 0, 0) in
the case k = 1 (a) and k = 2 (b).

the case of non-smooth perturbation ε = (ε, 0, 0) for two values of the classical parameter
k. In order to improve representation we show plots for several p at the same time. We
see that the heuristically obtain formula λtbr ∼ −log ε fit perfectly onto the numerical
results. The dependence of tbr on ε in the presence of smooth perturbations is shown in
figure 5. We note that the gross dependence of the break time is basically independent of
perturbation.

The break time tbr (21) also depends on the Hilbert space dimension N. In the limit of
small perturbations εN � 1 we obtain from (44) the following dependence on N:

λtbr ≈ const − 1
2 log N, (46)

where the constant depends on p, λ and details of the initial packets. The numerical results
shown in figures 6 and 7 in the case of using smooth and non-smooth perturbation, respectively,
confirm the theoretical dependence. But due to insufficient range in variable log N we cannot
check the prefactor in scaling relation (46) very accurately.

Note that the break time tbr is decreasing with increasing N. At the first look this would
appear as a contradiction to the known QCC principle, which states that the quantum system
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Figure 7. The dependence of tbr of Hilbert space dimension N at perturbation vectors
ε = (0, 10−10, 0), (0, 0, 10−10) (a, b) for k = 1.

should behave as the classical system in the limit N → ∞. But this is not the case: with
increasing N eventually Nε ∼ 1 and the perturbation approach becomes invalid. Thereby we
enter the general regime discussed in [1], where the break time tbr scales with N as

λtbr � C log N, (47)

where constant C depends on the type of perturbation. Therefore everything is still consistent
with the QCC principle.

5. Conclusions

In this paper we investigate the correspondence between the classical and quantum dynamics
of the perturbed cat map on the torus in the limit of semiclassical small perturbations. The
correspondence is measured by the overlap between the classical density and the Wigner
function called quantum-classical fidelity (QCF) and denoted by F(t). We study the time
evolution of QCF, which stays for a long time at the initial value F(t) ≈ 1 and then decays
towards the ergodic value F(t) ≈ 1/N faster than generally expected. The length of the initial
plateau tbr scales with perturbation ε and Hilbert space dimension as λtbr ∼ −log(N

1
2 ε),

where λ is the maximal Lyapunov exponent. At the first moment the scaling with N seems
to be in contradiction with the correspondence principle, but this is not the case because the
result is only meaningful for εN � 1. In this particular perturbation regime, the observed
behaviour is clearly far from general and hence the results presented here for the important
and historical model of the (perturbed) cat map supplement the general knowledge of the QCC
in evolving chaotic systems discussed in [1]. It is important to note that the presented results
can be applied to arbitrary chaotic systems which are almost Egorov exact or such that the
Egorov exactness can be broken by a weak perturbation.
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